Archive

Articles taggués ‘replication’

Réplication MySql Croisée

25/03/2017 Comments off

I► Nous allons voir dans cet article comment mettre en place une réplication croisée MySql en optimisant donc la répartition des charges et la sécurisation des données.

Pour des raisons de simplicité, nous testerons cette config sur le même serveur en utilisant mysqld_multi ( référez vous aux précédents articles )

Ordi2

 

Voici le fichier de conf de MySql

[root@/etc/mysql] cat multi_my.cnf.replicant.double
[mysqld_multi]
mysqld = /usr/bin/mysqld_safe
mysqladmin = /usr/bin/mysqladmin
user = root
password = debian

#——————– Serveur A ——————

[mysqld1]
socket = /tmp/mysql.sock1
port = 3307
pid-file = /var/lib/mysql1/hostname.pid1
datadir = /var/lib/mysql1
language = /usr/share/mysql/french
user = mysql

server-id=1
log-bin = /var/log/mysql/mysql_master_bin.log
binlog_do_db=centrale
replicate-do-db=centrale

master-host = 127.0.0.1
master-port = 3308
master-user = replicant
master-password = replicator

relay-log = /var/lib/mysql/slave-relay.log
relay-log-index = /var/lib/mysql/slave-relay-log.index

auto_increment_increment = 10
auto_increment_offset = 1

#————–Serveur B ———————-

[mysqld2]
socket = /tmp/mysql.sock2
port = 3308
pid-file = /var/lib/mysql2/hostname.pid2
datadir = /var/lib/mysql2
language = /usr/share/mysql/french
user = mysql
server-id=2
log-bin = /var/log/mysql/mysql_master_bin.log
binlog_do_db=centrale
replicate-do-db=centrale
master-host = 127.0.0.1
master-port = 3307
master-user = replicant
master-password = replicator
master-connect-retry=60
relay-log = /var/lib/mysql/slave-relay.log
relay-log-index = /var/lib/mysql/slave-relay-log.index

auto_increment_increment = 10
auto_increment_offset = 2

Important :

Les fichiers de logs doivent être les mêmes et l’utilisateur de réplication doit bien sûr être créé sur les 2 serveurs maîtres.

How to replicate a MySQL database on Linux

28/04/2016 Comments off

Database replication is a technique where a given database is copied to one or more locations, so that the reliability, fault-tolerance or accessibility of the database can be improved. Replication can be snapshot-based (where entire data is simply copied over to another location), merge-based (where two or more databases are merged into one), or transaction-based (where data updates are periodically applied from master to slaves).

How to replicate a MySQL database on Linux

MySQL replication is considered as transactional replication. To implement MySQL replication, the master keeps a log of all database updates that have been performed. The slave(s) then connect to the master, read individual log entries, and perform recorded updates. Besides maintaining a transaction log, the master performs various housekeeping tasks, such as log rotation and access control.

When new transactions occur and get logged on the master server, the slaves commit the same transactions on their copy of the master database, and update their position in the master server’s transaction log. This master-to-slave replication process is done asynchronously, which means that the master server doesn’t have to wait for the slaves to catch up. If the slaves are unable to connect to the master for a period of time, they will download and execute all pending transactions when connectivity is re-established.

Database replication allows one to have an exact copy of a live database of a master server at another remote server (slave server) without taking the master server offline. In case the master server is down or having any trouble, one can temporarily point database clients or DNS resolver to the slave server’s IP address, achieving transparent failover. It is must be noted that MySQL replication is not a backup solution. For example, if an unintended DELETE command gets executed in the master server by accident, the same transaction will mess up all slave servers.

In this article, we will demonstrate master-slave based MySQL replication on two Linux computers. Let’s assume that the IP addresses of master/slave servers are 192.168.2.1 and 192.168.2.2, respectively.

Setting up a Master MySQL Server

This part will explain the steps needed on the master server. First, log in to MySQL, and create test_repl database.

$ mysql -u root -p
mysql> CREATE DATABASE test_repl;

Next, create a table inside test_repl database, and insert three sample records.

mysql> USE test_repl;
mysql> CREATE TABLE employee (EmployeeID int, LastName varchar(255), FirstName varchar(255), Address varchar(255), City varchar(255));
mysql> INSERT INTO employee VALUES(1,"LastName1","FirstName1","Address1","City1"),(2,"Lastname2","FirstName2","Address2","City2"),(3,"LastName3","FirstName3","Address3","City4");

After exiting the MySQL server, edit my.cnf file using your favorite text editor. my.cnf is found under /etc, or /etc/mysql directory.

# nano /etc/my.cnf

Add the following lines under [mysqld] section.

[mysqld]
server-id=1
log-bin=master-bin.log
binlog-do-db=test_repl
innodb_flush_log_at_trx_commit=1
sync_binlog=1

The server-id option assigns an integer ID (ranging from 1 to 2^23) to the master server. For simplicity, ID 1 and 2 are assigned to the master server and the slave server, respectively. The master server must enable binary logging (with log-bin option), which will activate the replication. Set the binlog-do-db option to the name of a database which will be replicated to the slave server. The innodb_flush_log_at_trx_commit=1 and sync_binlog=1 options must be enabled for the best possible durability and consistency in replication. After saving the changes in my.cnf, restart mysqld daemon.

# systemctl restart mysqld

or:

# /etc/init.d/mysql restart

Log in to the master MySQL server, and create a new user for a slave server. Then grant replication privileges to the new user.

mysql> CREATE USER repl_user@192.168.2.2;
mysql> GRANT REPLICATION SLAVE ON *.* TO repl_user@192.168.2.2 IDENTIFY BY 'repl_user_password';
mysql> FLUSH PRIVILEGES;

A new user for the slave server is repl_user, and its password is repl_user_password. Note that the master MySQL server must not bind to the loopback interface since a remote slave server needs to log in to the master server as repl_user. Check this tutorial to change MySQL server’s binding interface. Finally, check the master server status by executing the following command on the server.

mysql> SHOW MASTER STATUS;

Please note that the first and second columns (e.g., master-bin.000002 and 107) will be used by the slave server to perform master-to-slave replication.

Lire la suite…

Réplication MySql avec PhpMyAdmin sur 2 serveurs distincts

28/04/2016 Comments off

Source: Tutoriels Web Linux MySql

I : sur le serveur Maître, configurez la réplication comme suit :

  • Dans l’onglet réplication, choisissez l’option configurer le serveur maître.

Capture1

Editer le fichier /etc/mysql/my.cnf

  • Redémarrez mysql : /etc/init.d/mysql restart
  • Puis faites exécuter dans phpMyAdmin
  • Ajouter un nouvel utilisateur pour la réplication et donner lui tous les privilèges nécessaires

Capture2

CREATE USER ‘replicant’@'localhost’ IDENTIFIED BY ‘***’;
GRANT REPLICATION SLAVE , REPLICATION CLIENT ON * . * TO ‘replicant’@'localhost’ IDENTIFIED BY ‘***’;

II : sur le serveur esclave, configurez la réplication comme suit :

  • Dans l’onglet réplication, configurez :
  • Vous devrez ajouter le server-id proposé par phpMyAdmin dans /etc/mysql/my.cnf et redémarrez mysql (pensez à ajouter slave-skip-errors=1062,1053 !)
  • puis faire éxécuter dans phpMyAdmin
  • Faites reconfigurer le serveur maître en saisissant les informations du serveur maître

Capture0

Ceci revient à faire en ligne de commande : et qui éditera au final le fichier master.info qui se trouve sur le serveur esclave :

Capture17

  • On obtient alors cet écran :

Capture3

 

On pourra synchroniser les données afin de copier toute la base de données vers le serveur esclave et ensuite démarrer complètement le serveur esclave (ce qui correspond à démarrer d’abord le fil I/O qui lit les requêtes du maître et le splace dans le relay-lo et ensuite le fil mysql qui lit le relay-log et éxécute le sql).

Lire la suite…

MySQL database replication with Linux

04/03/2016 Comments off

MySQL database replication with Linux

Database replication is a technique where a given database is copied to one or more locations, so that the reliability, fault-tolerance or accessibility of the database can be improved. Replication can be snapshot-based (where entire data is simply copied over to another location), merge-based (where two or more databases are merged into one), or transaction-based (where data updates are periodically applied from master to slaves).

MySQL replication is considered as transactional replication. To implement MySQL replication, the master keeps a log of all database updates that have been performed. The slave(s) then connect to the master, read individual log entries, and perform recorded updates. Besides maintaining a transaction log, the master performs various housekeeping tasks, such as log rotation and access control. When new transactions occur and get logged on the master server, the slaves commit the same transactions on their copy of the master database, and update their position in the master server’s transaction log. This master-to-slave replication process is done asynchronously, which means that the master server doesn’t have to wait for the slaves to catch up. If the slaves are unable to connect to the master for a period of time, they will download and execute all pending transactions when connectivity is re-established.

Database replication allows one to have an exact copy of a live database of a master server at another remote server (slave server) without taking the master server offline. In case the master server is down or having any trouble, one can temporarily point database clients or DNS resolver to the slave server’s IP address, achieving transparent failover. It is must be noted that MySQL replication is not a backup solution. For example, if an unintended DELETE command gets executed in the master server by accident, the same transaction will mess up all slave servers.

In this article, we will demonstrate master-slave based MySQL replication on two Linux computers. Let’s assume that the IP addresses of master/slave servers are 192.168.2.1 and 192.168.2.2, respectively.

Setting up a Master MySQL Server

This part will explain the steps needed on the master server.

First, log in to MySQL, and create test_repl database.

$ mysql -u root -p
mysql> CREATE DATABASE test_repl;

Next, create a table inside test_repl database, and insert three sample records.

mysql> USE test_repl;
mysql> CREATE TABLE employee (EmployeeID int, LastName varchar(255), FirstName varchar(255), Address varchar(255), City varchar(255));
mysql> INSERT INTO employee VALUES(1,"LastName1","FirstName1","Address1","City1"),(2,"Lastname2","FirstName2","Address2","City2"),(3,"LastName3","FirstName3","Address3","City4");

After exiting the MySQL server, edit my.cnf file using your favorite text editor. my.cnf is found under /etc, or /etc/mysql directory.

# nano /etc/my.cnf

Add the following lines under [mysqld] section.

[mysqld]
id=1
log-bin=master-bin.log
do-db=test_repl
innodb_flush_log_at_trx_commit=1
sync_binlog=1

The server-id option assigns an integer ID (ranging from 1 to 2^23) to the master server. For simplicity, ID 1 and 2 are assigned to the master server and the slave server, respectively. The master server must enable binary logging (with log-bin option), which will activate the replication. Set the binlog-do-db option to the name of a database which will be replicated to the slave server. The innodb_flush_log_at_trx_commit=1 and sync_binlog=1options must be enabled for the best possible durability and consistency in replication.

After saving the changes in my.cnf, restart mysqld daemon.

# systemctl restart mysqld

or:

# /etc/init.d/mysql restart

Log in to the master MySQL server, and create a new user for a slave server. Then grant replication privileges to the new user.

mysql> CREATE USER repl_user@192.168.2.2;
mysql> GRANT REPLICATION SLAVE ON *.* TO repl_user@192.168.2.2 IDENTIFY BY 'repl_user_password';
mysql> FLUSH PRIVILEGES;

A new user for the slave server is repl_user, and its password is repl_user_password. Note that the master MySQL server must not bind to the loopback interface since a remote slave server needs to log in to the master server as repl_user. Check this tutorial to change MySQL server’s binding interface.

Finally, check the master server status by executing the following command on the server.

mysql> SHOW MASTER STATUS;

18157192466_b3cc2d5ced_o

Please note that the first and second columns (e.g., master-bin.000002 and 107) will be used by the slave server to perform master-to-slave replication.

Lire la suite…

MySQL Master / Slave Replication

29/01/2016 Comments off

Source: Uptime Made Easy

Master Slave MySQL Replication Summary

Master / Slave replication in MySQL is a great way to store an exact replica of your database on another machine in another location as part of a disaster recovery plan.  Before setting up Master / Slave replication there are a few things to remember.

  • Writes – Writes to the master database should make it to the slave.  But writes to the slave will not make it to the master.  If you do write records to the slave database directly, be prepared to have to either recreate the records or back them up separately and recover them if the replication breaks.  Many times the only way to get the databases to replicate again is to backup the master and recover it over the top of the slave deleting anything that was in the slave database before.
  • Broken Replication – Writes made directly to the slave can cause the replication to break due to duplicate key rows, etc..  Always write to the master.
  • Reads – Reads should be possible from either server.  Many organizations will use replication so as to create another database to read from thereby taking the load of all of their select statements and reports off the master server.

 

MySQL Replication schemeMaster Slave MySQL Replication

Steps to Setup MySQL Master / Slave Replication

Prerequisites

We will be assuming that the following prerequisites are done prior to beginning the steps listed below:

  • MySQL has been installed on both the master and the slave servers
  • The slave server is able to communicate directly to the mysqld port (typically 3306) on the master server, meaning that there is no firewall, routing, NAT or other problems preventing communication.
  • You have an administrator MySQL user that can create users on both the master and the slave machines.
  • You have permissions to edit the /etc/my.cnf files on both machines and enough privileges to restart mysql.

That should be it!  Let’s begin setting it up.

Lire la suite…